
J Anesth (2007) 21:378–389
DOI 10.1007/s00540-007-0524-z

Role of urotensin II and its receptor in health and disease
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quently isolated a 688-base pair (bp) complementary 
DNA sequence encoding the human U-II peptide. U-II 
produces potent but variable constrictor effects in some 
but not all vascular beds. Indeed, U-II is currently 
described as “the most potent vasoconstrictor identi-
fi ed” [2]. U-II has also been shown to act as a potent 
vasodilator in some isolated vessels; for example, human 
small pulmonary and abdominal arteries [3]. In addition 
to these vascular actions, U-II is a positive inotrope in 
human right atrial trabeculae and also exhibits arryth-
mogenic activity [4]. Human urotensin II (hU-II) and 
its receptor (UT receptor) display greatest expression 
in the peripheral vasculature, heart, and kidney [5] 
although both are found in other tissues, notably the 
central nervous system [6]. In this short review we 
describe the basic pharmacology of this system and its 
role in several disease states that are of interest to anes-
thesiologists. We have been selective in what we have 
covered, but there are several other reviews on this 
subject, with varying emphasis on basic and clinical 
aspects [1,7–13].

Receptor and peptide

At the time of isolation of the peptide U-II its target 
receptor was unknown. Ames et al. [2] used a reverse 
pharmacology technique to de-orphanize the orphan 
G-protein coupled receptor (GPCR), GPR14 (or 
SENR) and showed that U-II was the endogenous 
ligand for this receptor, now termed the “UT receptor” 
[14]. Activation of recombinant and native UT receptor 
causes a rise in intracellular calcium via coupling to the 
Gq/11 family of G-proteins [15–18] .

U-II is derived from a larger precursor prepropep-
tide, pre-pro-U-II, encoded by a single gene [13]. In 
humans, two prepropeptides have been identifi ed; one 
is 124 amino acids in length, the other, 139, and proteo-
lytic cleavage of either results in release of a single 11-
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Introduction

Urotensin II (U-II) is a cyclic peptide fi rst isolated from 
the caudal neurosecretory system of goby fi sh in 1969 
[1]. Subsequent gene bank searches using the carp 
U-II sequence yielded a match to a human expressed 
sequence with 25% identity. Ames et al. [2] subse-
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biological activity. SAR studies on hU-II have shown 
that the shortest biologically active sequence is an N-
terminally truncated peptide, hU-II (4–11). Ligands of 
reduced effi cacy, such as [Orn8]hU-II, Urantide, and 
UFP-803 have been identifi ed; see Table 1 [15,26–28]. 
Palosuran has been identifi ed as a potent nonpeptide, 
orally active antagonist of the human UT receptor, 
binding studies showed the ligand to have 100-fold 
greater affi nity for human UT receptor over rat UT 
receptor [29]. Other synthetic ligands, e.g., agonists: 
AC-7954,1 [30] and antagonists: SB-706375 [31] have 
been identifi ed. For a review of UT receptor antagonists 
the reader is directed to [32]. See also Table 1.

Intracellular signalling pathways

U-II activation of UT receptor increases phosphoin-
ositide (PI) turnover, with a subsequent increase 
in intracellular Ca2+ [2,17,18,33]. Interestingly, the 
potency for increased Ca2+ is similar to that causing 
vasoconstriction, indicating a possible close relationship 
between these events [15,34]. Inhibition of phospholi-
pase C (PLC) with 2-nitro-4-carboxyphenyl-N, N-
diphenylcarbamate (NCDC) inhibited both PI turnover 
and contractile responses induced by U-II [35].

At recombinant UT receptors expressed in CHO and 
human embryonic kidney (HEK) cells, U-II leads to an 
increase in PI turnover and intracellular calcium [2,28]. 
Infl ux of extracellular calcium, through the activation of 
L-type calcium channels, is also responsible for the U-II 
induced increase in intracellular calcium and hence 
vasoconstrictor actions [36]. We have also shown an 
infl ux component to U-II response in CHO cells where 
U-II produced a biphasic increase in Ca2+, with the peak 
being independent of extracellular Ca2+ and the plateau 
phase being extracellular Ca2+-dependent, implying 
infl ux (Fig. 2). This infl ux may simply be a refi lling tran-
sient [17]. U-II increases Ca2+ at native UT receptor in 
rhabdomyosarcoma cells [16,37] and in cultured neu-
rones [18]. In cultured neonatal cardiomyocytes, U-II 
causes hypertrophic growth and phenotypic changes to 
include enlargement of cells and sarcomere reorganiza-
tion [38]. These cellular responses were attributed to 
U-II stimulating phosphorylation of mitogen-activating 
protein kinases (MAPK) extracellular signal-regulated 
kinase (ERK) 1/2 and p38. U-II activation of ERK 1/2 
and p38 was dependent, to varying degrees, on epider-
mal growth factor receptor (EGFR) trans-activation, 
although EGFR-independent mechanisms are also 
involved in ERK 1/2 activation [38]. In the study of 
Onan et al. [38], PKC activation was not involved in 
ERK 1/2 activation and cardiac hypertrophy; however, 
there is evidence to show that the activation of specifi c 
isoforms of PKC is important in these processes [39,40]. 

2HN-Glu1-Thr2-Pro3-Asp4-[Cys5-Phe6-Trp7-Lys8-Tyr9-Cys10]-Val11-OH

ETPD[CFWKYC]V

QHGAAPE[CFWKYC]I

QHGTAPE[CFWKYC]I

AGTAD[CFWKYC]V

G, Glycine (Gly); P, proline (Pro); A, alanine (Ala); V, valine (Val);
I, isoleucine (Ile); C, cysteine (Cys); F, phenylalanine (Phe); Y, tyrosine (Tyr);
W, tryptophan (Trp); H, histidine (His); K, lysine (Lys); Q, glutamine (Gln);
E, glutamic acid (Glu); D, aspartic acid (Asp); T, threonine (Thr)

HUMAN (11 amino acids)

MOUSE (14 amino acids) 

RAT (14 amino acids) 

GOBY (12 amino acids) 

Fig. 1. Amino acid structure of human urotensin II (U-II) and 
comparison with common rodent species and the goby. The 
peptide contains a conserved cyclised hexapeptide

amino-acid sequence U-II. U-II is characterized by a 
disulfi de-linked C-terminal structure. The cyclic region 
of U-II, which confers biological activity, has been con-
served in evolution from fi sh to mammals [19–22]. The 
N-terminus of the peptide is known to vary in length 
and sequence, giving species/isoform differences [22] 
(Fig. 1). Urotensin II-related peptide (URP) has also 
been described [23,24].

At both recombinant and natively expressed UT 
receptors, the dissociation of U-II is essentially irrevers-
ible, after 90 min only ∼15% of [125I]U-II was dissociated 
by the addition of an excess (1 µM) of cold U-II in 
human SJRH30 rhabdomyosarcoma cells [16]. In 
Chinese hamster ovary (CHO) cells expressing the 
human UT receptor, we have shown that the binding of 
[125I]U-II was irreversible, such that addition of 1 µM 
unlabelled U-II did not displace [125I]U-II binding over 
a 2-h period [17]. This irreversibility of binding is an 
important determinant of UT receptor functionality 
and may result from the cyclic nature of the peptide. 
In the presence of irreversible binding, circulating 
U-II would be expected to occupy and desensitise the 
system, implicating functional silence. If this supposi-
tion is correct then a lack of effect of gene knockout 
might be predicted (see below) and alterations in func-
tion may result from modulation of UT receptor 
expression.

Structure activity relationship (SAR) studies have 
shown that the disulfi de bridged cyclic hexapeptide 
region of U-II is crucial for biological activity, with side 
chains of the residues Trp7, Lys8, and Tyr9 being required 
for receptor recognition and activation [25]. The Lys8 
residue is believed to the most important residue for 
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ERK 1/2 activation has also been demonstrated in 
CHOhUT cells; in these cells, a role for Gi/o-protein cou-
pling and the involvement of phosphatidylinositol-3-
kinase, phospholipase C, and calcium channel-mediated 
mechanisms was implicated in the MAPK activation 
[41]. If UT receptor is expressed on the vascular endo-
thelium, then increased Ca2+ would activate nitric oxide 
synthase (NOS) to produce nitric oxide (NO) and 
induce vasodilation [42,43]. Some of the signalling 
pathways consequent upon UT receptor activation are 
shown in Fig. 3.

In vitro (tissue/vessel) studies

Contractile responses

There is great variation in U-II-induced contraction, 
not only differing between the same tissue/vascular 
beds derived from one species, but also from distinct 
regions of a specifi c vessel. U-II is best described as 
a high-potency low-effi cacy peptide. For example, in 
rabbit, contractile responses were measured using 
thoracic aorta and coronary arteries, yet no response to 
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Fig. 2A–E. Typical receptor binding and signal transduction 
profi le of recombinant human urotensin II receptor (hUT) 
expressed in Chinese hamster ovary (CHO) cells. In A and B, 
receptor expression is described using standard polymerase 
chain reaction (PCR) and radioligand binding protocols, 
respectively. In B a saturation isotherm is depicted along with 
Scatchard transformation (inset). The binding of [125I]U-II was 
con centration-dependent (KD, 742 pM), saturable (Bmax, 
1110 fmol·mg−1), and unaffected by the inclusion of a pepti-
dase inhibitor cocktail, i.e., the peptide is stable in vitro. In C, 
activation of UT receptor increases the turnover of inositol 
phosphates IPx; (measured using [3H]inositol-labelled cells). 

Increased inostiol phosphate production releases Ca2+ from 
intracellular stores. In D, a time course of U-II (100 nM, black 
bar) addition in the absence and presence of extracellular Ca2+ 
is shown. In the absence of extracellular Ca2+, the plateau 
phase is absent, indicating that the peak is due to a release 
from intracellular stores and the plateau is due to the entry of 
extracellular Ca2+. In E, the concentration-response relation-
ship for U-II peak Ca2+ response (stores) is depicted. The 
effective concentration (EC50) for Ca2+ of 1.3 nM is close to 
that in C of 0.6 nM for IPx, implying close coupling (data are 
from reference [17] and unpublished data). RT, reverse 
transcription
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U-II could be measured in pulmonary artery or ear 
artery/vein [44]. This tissue heterogeneity of response 
to U-II is highlighted in other species. In rat, reduced 
U-II reactivity is observed in the aorta the more distal 
to the aortic arch. In the thoracic aorta, U-II produces 
a greater response than in rat carotid artery, while there 
is little or no response in the abdominal aorta [45]. This 
reduced responsiveness correlates with reduced UT 
receptor expression. Indeed, it has been shown in rat 
isolated blood vessels that a loss of U-II contractile 
activity follows a loss of receptor expression, as mea-
sured with [I125]-goby U-II [46].

A recent study examined the effect of aging on 
the vascular contractile effect of hU-II in rat thoracic 
aorta [47]. The maximal contractile response to U-II 
in aorta from young rats (2–3 months) was markedly 
greater than that in aorta from aged (25–27 months) 
rats, at 79% and 12% of KClmax, respectively (KCl 
response did not change between young and old 
animals). The contractile response of rat aorta to 
U-II was decreased in the presence of an intact endo-
thelium, from 79% (endothelium-denuded) to 33% 
(intact endothelium) of KClmax. The role of NO in U-II 
responsiveness was further investigated. In aorta from 
young animals with an intact endothelium, the presence 

of the NOS inhibitor NG-nitro-l-arginine (L-NNA) 
increased U-II maximal contractions from 33% to 
50% of KClmax. Potentiation of the U-II response by 
L-NNA was not apparent in aged animals, and this 
may explain why some studies have shown no effect of 
the endothelium or NO inhibitors on vasoconstriction 
of rat aorta [47,48]. Despite these variations, rat tho-
racic aorta represents a sensitive U-II / UT receptor 
assay system.

Contractile responses to U-II have also been studied 
in human-derived vascular tissue, and contractile 
responses can be measured in venous tissues. Unlike 
other species, human vessels responding to U-II are 
more ubiquitous, with vasoconstriction being reported 
in coronary, mammary, and radial arteries, as well as 
saphenous and umbilical veins (see [11] for review). 
However, in humans, like other species, there is great 
variation in the contractile response to U-II; for example, 
in small pulmonary arteries, only 30% of vessels tested 
responded to U-II and of those the effi cacy varied from 
14% to 220% (relative to the contraction caused by 
50 mM KCl). Further, these pulmonary artery responses 
were only evident in the presence of NG-nitro-l-
arginine methylester (L-NAME), an inhibitor of NO 
synthesis [49].

Fig. 3. Proposed basic signal transduc-
tion mechanisms in the U-II / UT recep-
tor system (some membrane events are 
depicted in the cytosol for clarity). In 
vascular smooth muscle (larger struc-
ture), U-II peptide binds to its respective 
UT receptor, leading to the dissociation 
of the G-protein complex αβγ to yield 
active Gαq/11, which, in turn causes the 
hydrolysis of phosphatidylinositol 4, 5 
bisphosphate (PIP2) to inositol 1, 4, 5-
trisphosphate (IP3) and diacylglycerol 
(DAG) by phospholipase C (PLC). IP3 
causes intracellular calcium to rise by 
binding to the IP3 receptor (IP3R), which 
releases Ca2+ from the endoplasmic/
sarcoplasmic reticulum (ER/SR), thereby 
leading to contraction. Cytoplasmic Ca2+ 
concentrations are also elevated as a con-
sequence of the opening of channels on 
the plasma membrane. On the endothe-
lium, UT receptor activation culminates 
in the synthesis and release of nitric oxide 
(NO) and endothelium-derived hyper-
polarizing factor (EDHF), which causes 
vasodilation. GTP, guanosine triphos-
phate; GDP, guanosine diphosphate; 
NOS, nitric oxide synthase. Adapted 
from references 8, 9
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Vasodilation

Vasodilatory responses to U-II appear to be dependent 
on the presence of an intact endothelium. In 5HT-
precontracted rat coronary arteries, hU-II caused endo-
thelium-dependent relaxation. This effect was abolished 
in the presence of the NOS inhibitor L-NAME [48]. U-
II-mediated relaxation has also been demonstrated in 
isolated aorta from rabbits and rats, and is endothelium-
dependent [47,48,50]. Vasodilation is caused by U-II-
mediated increases in intracellular calcium in endothelial 
cells (Fig. 3), resulting in release of the endothelial-
derived relaxing factors; NO and endothelium-derived 
hyperpolarizing factor (EDHF). U-II-mediated release 
of NO and its resultant dilatory action has been shown 
to attenuate U-II-mediated contraction in the rat aorta 
and NO inhibitors were shown to potentiate U-II con-
tractility [47]. Endothelial factors might modulate the 
actions of U-II in humans, so contributing to contractile 
variability. In addition to endothelial factors, variations 
in both the vasodilatory and constrictor responses to 
U-II might refl ect the expression of the UT receptor, 
which, in part, will depend on the size and location of 
the vessel [1].

In vivo studies

In conscious rats, U-II causes an overall depressor 
effect, causing dilatation of vascular beds, resulting in 
reduced mean arterial blood pressure and a tachycardia. 
This later effect is only apparent at a very high doses, 
of 3000 pmol·kg−1 [51]. In conscious rats, 6-h infusion of 
hU-II leads to a dose-related tachycardia and a slowly 
developing (90–120 min) increase in blood fl ow. Using 
Doppler to measure vascular conductance, rat hind-
quarters were the only region to show change, i.e., an 
increase in conductance—inferred to be a vasodilata-
tion of this vascular bed. Left renal and superior 
mesenteric arteries showed no change in Doppler mea-
surements. U-II-mediated effects were largely via cyclo-
oxygenase (COX)-dependent pathways, given that 
indomethacin abolished these responses. The cardio-
vascular effects of infused U-II were also reduced by 
L-NAME, indicating the involvement of NO [52]. The 
observation that U-II causes vasodilatation in the pres-
ence of an intact endothelium suggests this depressor 
effect may be the more important in vivo action of 
U-II.

Coronary perfusion pressure (CPP) in isolated rat 
hearts was increased by U-II to a maximum at 100 nM; 
at higher concentrations, the responses decreased back 
to basal. L-NAME and indomethacin alone increased 
CPP by around 25 mmHg, suggesting basal control of 
coronary pressure by NO and COXs. In the presence of 

these agents, U-II caused a concentration-dependent 
increase in CPP, but these responses were greater and 
did not decline at high U-II doses. Endothelial-derived 
dilators such as NO and prostaglandin (PG)I2 appeared 
to act to limit the constrictor activity of U-II. Indeed, it 
could be argued that U-II is self-limiting, in that higher 
concentrations reduce constrictor activity, presumably 
through the U-II-mediated release of NO and PGs. 
Reduced CPP from high U-II concentrations is not 
apparent in the presence of NO and PG inhibitors, 
adding substance to this argument [53].

In vivo studies in cynomolgus monkeys have revealed 
that low i.v. doses of hU-II result in an increase in 
cardiac output and regional vasodilation, while high 
doses lead to a fatal combination of increased vascular 
resistance and only moderate reduction in blood 
pressure, coupled with a decrease in cardiac output 
(80%) [2]. 

Knockout studies

Deletion of the UT receptor in UT receptor knockout 
(KO) mice does not affect basal hemodynamics in 
comparison to wild-type (WT) mice. U-II caused a 
dose-dependent vasoconstriction of isolated aortae in 
wild-type mice that was absent in the KO model. 
Both WT and KO tissue responded to other vasoactive 
agents—KCl, phenylephrine, and carbachol—demon-
strating that UT receptor deletion selectively abolished 
U-II-induced responses without affecting reactivity 
to the agents tested [54]. Studies of apolipoprotein 
E (ApoE) knockout (ApoE−/−) mice demonstrated 
increased expression of the UT receptor in ApoE−/− 
species. In these studies, mice 18, 28, and 38 weeks of 
age were examined. Increased UT receptor mRNA and 
[125I]U-II binding was noted in aortae from the ApoE−/− 
mice at all ages compared to WT (ApoE+/+). Interest-
ingly, the 28-week mice showed signifi cantly higher 
expression compared to 18- and 38-week mice [55].

Central actions

In rats, U-II gene expression has been reported in sacral 
cord motor neurones [56] and U-II immunoreactivity is 
also detectable in spinal cord and brainstem [57]. UT 
receptors appear to be functionally active, in that U-II 
increases intracellular Ca2+ ([Ca2+]i) in dissociated spinal 
cord neurones [18]; see later. The observation that both 
U-II peptide and its receptor are situated within con-
served regions of the central nervous system, such as the 
brainstem and medulla oblongata, suggest a central role 
in cardiovascular physiology. Indeed, in rats, microin-
jection of U-II into the A1 region of the medulla oblon-
gata resulted in both hypotension and a bradycardiac 
response, while U-II administration to the A2 region of 
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the medulla produced no measurable effects on mean 
arterial blood pressure or heart rate. However, central 
administration has also been shown to produce a tachy-
cardia [58]. In ewes, i.c.v. admini stration produced 
tachycardia, a positive ionotropic response, and an 
increase in cardiac output, increased sympathetic 
outfl ow, and neuroendorine activation [59].

Peptide/receptor expression

In common with other peptide and receptor systems, 
distribution has been probed by (i) using specifi c anti-
bodies, (ii) by measuring peptide and receptor mRNA 
levels, and (iii) using radiolabelled peptides.

U-II peptide immunoreactivity has been located in 
the following tissues: (i) central; abducens nucleus, 
hypoglossal nucleus, thalamus, trigeminal nucleus, and 
spinal cord, (ii) peripheral; heart, kidney, and liver. 
Interestingly, U-II is also found in human coronary 
atherosclerotic plaque tissue [2]. UT receptor immu-
noreactivity has also been located in the following 
tissues: (i) central; hippocampus, hypothalamus, 
medulla, and thalamus, (ii) peripheral; heart, kidney, 
pancreas, and liver (see [12,13] for complete list of tissue 
expression).

mRNA for prepro-U-II has been identifi ed in the 
following human tissues: (i) central; spinal cord, medulla 
oblongata, and (ii) peripheral; wide range of vascular 
tissues, kidney, spleen, and placenta. mRNA for the UT 
receptor has been identifi ed in the following human 
tissues: (i) central; brain cortex, hypothalamus, medulla 
oblongata, (ii) peripheral; wide range of vascular tissues, 
kidney, and atrium and ventricle of the heart [12,13,60]. 
Clearly there is overlap of U-II and UT receptor 
expression.

Iodinated U-II has also been used to describe recep-
tor expression from a variety of human tissues [60]. 
Autoradiographic analysis revealed the presence of the 
receptor in the renal cortex, skeletal muscle, dorsal root 
ganglion of the spinal cord, cerebral cortex, and cardio-
vascular tissue, including the epicardial coronary artery 
and myocytes in the left ventricle. Skeletal muscle dis-
plays the greatest density, and saturation analysis 
reported maximum receptor density (Bmax) values in the 
region of 2 fmol·mg−1 [60].

Of particular relevance to UT receptor distribution, 
it has been hypothesized that the variability in tissue 
responsiveness to U-II is due to either: (i) the presence 
of irreversibly prebound U-II to its receptor or (ii) dif-
ferential receptor expression and effi ciency of second-
messenger coupling varying between cell/tissue types 
[10].

Clinical studies

Circulating U-II levels

Several studies have detailed circulating levels of U-II 
peptide in healthy subjects relative to patients with a 
range of different diseases. These studies have revealed 
great disparity in circulating U-II concentrations in 
healthy volunteers, with values ranging from 6 pg·ml−1 
[61] to 3.6 ng·ml−1 [62]. See Table 2 for a summary of 
studies measuring plasma U-II concentrations. While 
variation in U-II plasma levels is to be expected for 
different disease states, the large variability in control 
groups is unexpected and makes interstudy compari-
sons awkward. One possible explanation for this 
variability may lie in U-II assay methodology. Two 
commonly used assay formats are radioimmunoassay 
(RIA) and enzyme-linked immunosorbent assay 
(ELISA). Both use antibodies directed against U-II. 
Some of these antibodies may recognize not only the 
mature U-II peptide but also its precursor protein and 
various truncated U-II fragments [63].

Heart failure/hypertension studies
There are many studies detailing plasma U-II levels in 
various heart failure models (see Table 2). The Consen-
sus is that heart disease increases U-II concentrations 
(although there are some exceptions). In addition there 
appears to be upregulation of UT receptor in cardio-
myocytes, endothelial cells, and smooth muscle cells 
from patients with heart failure [64]. Of particular inter-
est is the study of Lim et al. [65], who compared the 
effects of iontophorezed U-II in the forearms of healthy 
volunteers and patients with heart failure. Microvascu-
lar tone was measured using Doppler laser velocimetry. 
In healthy volunteers, U-II caused a dose-dependent 
vasodilation, but in patients with heart failure, U-II 
caused vasoconstriction. Depending on how the studies 
are interpreted, U-II increases as a function of blood 
pressure in some studies but not others (see Table 2). 
We have compared plasma and cerebrospinal fl uid 
(CSF) U-II concentrations in normotensive and hyper-
tensive patients and have shown that CSF levels were 
∼15% lower than paired blood plasma. While U-II con-
centrations were not increased in hypertensive patients 
relative to the normotensive controls, there was a posi-
tive correlation in the hypertensive group between mean 
arterial pressure and the U-II concentration of the CSF 
[66]. In patients with markedly elevated pressures; e.g., 
those with pre-eclampsia/eclampsia, an increase and no 
change have been reported [67,68]. U-II has also been 
iontophorezed in the forearms of hypertensive patients 
with Doppler measurement of blood fl ow. U-II pro-
duced a dose-dependent increase in fl ow, i.e., dilation, 
but in hypertensives a decrease in fl ow, signifying vaso-



J. McDonald et al.: Role of urotensin II and its receptor in health and disease 385

Table 2. Plasma U-II levelsa in humans with different disease states, and in healthy controls

Disease Healthy control Diseased
Reference 

no.

Chronic heart failure 9.16 pg·ml−1 (6.6 pmol·l−1) 30.6 pg/ml (22 pmol/l) [81]
Acute myocardial infarction 0.58 pg·ml−1 (0.42 fmol·ml−1) 1.94 pg/ml (1.40 fmol/ml) [82]
Congestive heart failure 84–11 pg·ml−1 Unchanged—for both moderate and severe 

congestive heart failure
[83]

Congestive heart failure 4.35 pg·ml−1 1.41 pg/ml [84]
Congestive heart failure 22.7 pg·ml−1—Dependent on 

site. Value from aortic 
root

230.9 pg/ml—Aortic root [85]

Coronary heart disease 3.20 pg·ml−1 1.61 pg/ml [86]
Chronic heart failure 3290 pg·ml−1—at rest 2990 pg/ml—At rest [87]
Congestive heart failure 0.84 pg·ml−1 1.17 pg/ml—moderate

1.49 pg/ml—severe
[88]

Acute coronary syndrome 3300 pg·ml−1 3450 pg/ml—stable artery disease
2530 pg/ml—acute coronary syndrome

[89]

Coronary artery disease 
Ischemic cardiomyopathy

1409 pg·ml−1

1137 pg·ml−1

Increased—complex sub-grouping analysis [90]
NYHA I 1884 pg/ml [91]
NYHA II 2294 pg/ml
NYHA III 4822 pg/ml
NYHA IV 6631 pg/ml

Heart failure 2.6 pg·ml−1 (1.9 pmol·l−1) 5.4 pg/ml (3.9 pmol/l) [92]
Congenital heart disease 

(children)
1.18 pg·ml−1 (0.85 pmol·l−1) 2.9 pg/ml (2.09 pmol/l) [93]

Hypertension 12.2 pg·ml−1 (8.8 pM) 18.9 pg/ml (13.6 pM) [94]
Cirrhosis and portal 

hypertension
3600 pg·ml−1 (3.6 ng·ml−1) Central venous—1290 pg/ml (1.29 ng/ml)

Portal venous blood—1100 pg/ml (1.1 pg/ml)
[62]

Hypertension Plasma, 11.85 pg·ml−1

CSF, 8.24 pg·ml−1

Cord, 10.10 pg·ml−1

Plasma, 9.29 pg/ml
CSF, 8.73 pg/ml
Cord, 13.10 pg/ml

[66]

Renal dysfunction 6.11 pg/ml(4.4 fmol/ml) No dialysis—elevated two-fold
Dialysis—elevated three-fold

[70]

Diabetes mellitus 7.22 pg/ml (5.2 fmol·ml−1) Creatinine clearance ≥ 70 ml/min, 15.13 pg/
ml (10.9 fmol/ml)

Creatinine clearance ≥ 30 ml/min and 
<70 ml/min, 15 pg/ml (10.8 fmol/ml)

Creatinine clearance <30 ml·min−1, 22.1 pg/
ml (15.9 fmol/ml)

[71]

Diabetes mellitus 6.11 pg·ml−1 (4.4 fmol 
U-II·ml−1)

Nonproteinuric—10.8 pg/ml (7.8 fmol U-II/
ml)

Proteinuric—10.1 pg/ml (7.3 fmol U-II/ml)

[61]

Nephrotic syndrome 
(children)

37.31 pg·ml−1 (Remission) 31.09 pg/ml (relapse) [95]

Endstage renal disease 3100 pg·ml−1 6500 pg/ml endstage [96]
Endstage renal disease 3300 pg·ml−1 5300 pg/ml With cardiovascular event 

7100 pg/ml Without cardiovascular event
[97]

Pre-eclampsia Plasma, 23.05 pg·ml−1

CSF, 19.27 pg·ml−1
Plasma, 21.88 pg/ml
CSF, 17.87 pg/ml

[67]

Pre-eclampsia/eclampsia 3.93 pg·ml−1 10.11 pg/ml [68]
a U-II levels are normalized to pg·/ml−1; original presentation of data is given in parentheses
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constriction was observed [69]. It would appear from 
these iontophoresis studies in healthy volunteers at 
least, that U-II in the forearm produces vasodilation. 
However, intravenous infusion of U-II failed to produce 
any gross hemodynamic changes; see below.

Renal disease, diabetes, and diabetic nephropathy
There have been several studies from Totsune et al. 
[61,70,71], who have shown that plasma U-II is elevated 
in renal failure and that this increase was greater in 
patients with a creatinine clearance of less than 
30 ml·min−1 (compared with ≥70 ml·min−1) [71], and 
those on dialysis [70]. These increases in U-II may be 
attributed to decreased excretion of the peptide from 
the kidney, rather than increased expression. However, 
it has also been suggested that elevated U-II in diabetes 
may come from damaged vascular endothelial cells. 
In non-proteinuric and proteinuric diabetic patients, 
plasma hU-II levels were also elevated (relative to 
healthy controls), by 1.8- and 1.7-fold, respectively. A 
lack of correlation between U-II levels and fasting blood 
sugar levels demonstrated that hyperglycemia was not 
the cause of the U-II elevation [61]. See Table 2 for 
other plasma U-II data.

The gene encoding human preproU-II (UTS2) con-
tains fi ve exons and is located at 1p36. The gene is 
modifi ed post-translationally at exon 2 to produce 
preproU-IIa and preproU-IIb, with 139 and 124 amino 
acids, respectively. The difference resides in the N-
terminal sequence. In contrast, the gene encoding UT 
receptor (UTS2R), located at 17q25.3, is intronless and 
encodes a 389-amino-acid protein [8]. There are multi-
ple single-nucleotide polymorphisms (SNPs) in UTS2 
(41 using National Center for Biotechnology Informa-
tion [NCBI] and a further 19 using the Applied Biosys-
tems [Foster city, CA, USA] database) and in UTS2R 
(8 using NCBI and a further 15 using the Applied 
Biosystems database). Several of these polymorphisms 
have been studied in non-caucasian subjects, and there 
is disease association. In Japanese, SNP 3836C>T 
(S89N) in UTS is associated with insulin resistance and 
type 2 diabetes mellitus [72,73]. In Hong Kong Chinese, 
Ong et al. [74] showed that the UTS2 haplotype GGT 
(−605G, 143G, 3836T) and the UTS2R haplotype AC 
(−11640A, −8515C) were associated with elevated 
plasma glucose following an oral glucose tolerance test. 
These data further implicate the U-II/UT receptor 
system in the pathophysiology of diabetes mellitus.

Administration of U-II and U-II receptor antagonist 
in humans

U-II has been infused intraarterially in healthy human 
volunteers (0.001–300 pmol·min−1) with subsequent 
measurement of forearm blood fl ow [75]. While plasma 

U-II concentrations were seen to rise, there was no 
change in blood fl ow. In a further investigation from 
the same group [76], U-II was infused intraven-
ously in healthy volunteers (0 [saline], 3, 30, and 
300 pmol·min−1). In this placebo-controlled study, there 
was no change in systemic hemodynamics, despite rising 
U-II concentrations.

As described above (Table 2), patients with renal 
disease (diabetic) have increased plasma U-II concen-
trations, and this may reduce renal blood fl ow. The U-II 
antagonist palosuran increased renal blood fl ow and 
delayed the development of proteinuria and renal 
damage in rats [77]. In macroalbuminuric diabetic 
patients, palosuran (125 mg twice daily for 13.5 days) 
decreased (relative to baseline) the 24-h urinary albumin 
excretion rate by 26.2% in patients with normal to 
mildly impaired renal function and by 22.3% in patients 
with moderate to severely impaired renal function [78]. 
This is the fi rst study using U-II receptor antagonists in 
humans and suggests that palosuran may benefi t dia-
betic patients with renal failure. Further studies with 
this and the other UT receptor antagonists available are 
eagerly awaited.

Conclusions

That U-II is a potent (low-effi cacy) vasoactive peptide 
is unequivocal. It also appears that it plays a relatively 
minor role in health, as shown by knockout studies in 
mice and infusion studies in humans. Its role in disease 
is less clear. This peptide’s concentrations are elevated 
in heart failure, renal dysfunction, diabetes, and hepatic 
impairment. From a therapeutic viewpoint, U-II antag-
onists appear the most promising, and early studies in 
humans have already begun. For the anesthesiologist, 
this novel peptide-receptor system may be of use in the 
intensive care unit.
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